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�antum Chemistry: Need of approximations 2/21

The underlying physical laws necessary for the
mathematical theory of a large part of physics
and the whole of chemistry are thus completely
known and the di�iculty is only that the ex-
act application of these laws leads to equations
much too complicated to be soluble.

P.A.M. Dirac
Proc. Roy. Soc. (London), 123 714 (1929).



�antum Chemistry: Why is chemistry hard? 3/21

• Consider H2 ground state

• |σσ̄〉 is Aufbau principle – approximation

• Exact state:

|ψ〉 = a |σσ̄〉+ b |σσ̄∗〉+ c |σ∗σ̄〉+ d |σ∗σ̄∗〉

• To get |ψ〉, solve for values of a, b, c, d and store in a vector

• Number of configurations increases rapidly with system size:

# Orbitals # Configurations Storage (Gb)
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• Consider H2 ground state

• |σσ̄〉 is Aufbau principle – approximation

• Exact state:

|ψ〉 = a |σσ̄〉+ b |σσ̄∗〉+ c |σ∗σ̄〉+ d |σ∗σ̄∗〉

• To get |ψ〉, solve for values of a, b, c, d and store in a vector

• Number of configurations increases rapidly with system size:

# Orbitals # Configurations Storage (Gb)
4 36 2.9e-7
8 4900 3.9e-5
16 165,636,900 1.3
32 3e+17 3e+9
64 3e+36 earth*

• Because of this, approximations are
needed, e.g. CCSD, MP2, (and even DFT)

• However, o�en these approximations
aren’t accurate enough to solve a given
problem

• This is why chemists have started
thinking about quantum computing



What is a quantum computer? 4/21

�antum computing is the use of quantum-
mechanical phenomena such as superposition and
entanglement to perform computation.

– Wikipedia
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�antum systems are fully characterized by a wavefunction: |ψ〉
• In general, this state can be a superposition of any number of

states:

|ψ〉 = c1 |φ1〉+ c2 |φ2〉+ · · ·

• Not a strange idea - think of the σ bond in H2

• This can also illustrate entanglement which means “not
factorizable into product form”

• Consider occupation number basis - not separable:

|σ〉 = 1√
2 (|10〉+ |01〉)

• Superposition but not entangled:

(|0〉+ |1〉)⊗ (|0〉+ |1〉) = |00〉+ |10〉+ |01〉+ |11〉
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• Classical bits: 0 or 1
• �antum bit (�bit): any superposition of 0 and 1

e.g. 1√
2 (|0〉+ |1〉)

• Classical register: 01100101
• �antum register: a |01110101〉+ b |01011001〉+ c |01010100〉+ · · ·
• A qubit is an abstraction - just any controllable 2-level system: multiple platforms
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How to study chemistry with qubits? 7/21

• Think of a “trapped-ion” in it’s ground state

• Excite it with light to it’s first excited state (these two states will define the qubit)

• Now map or “associate” a single qubit to a molecular orbital for some system you wish to
study

• A |0〉 qubit means the MO is unoccupied. A |1〉 qubit means the MO is occupied.

Atom in Ground State

Map
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Qubit 1 Qubit 2 Qubit 3 Qubit 4

Orbital 1 Orbital 2Orbital 1 Orbital 2



How to create a more complicated state on a QPU? 9/21

1. Create with Aufbau state

2. Create superposition of |0〉+ |1〉 on qubit 3 (Hadamard): |1100〉 → 1√
2 (|11(1+ 0)0〉)

3. Excite qubit 1 only when qubit 3 is excited (CNOT): 1√
2 (|11(1+ 0)0〉)→ 1√

2 (|1100〉+ |0110〉)
4. Continue to entangle other qubits to create |ψ〉 = a |1100〉+ b |1010〉+ c |0101〉+ d |0011〉
5. Measure any operator on the QPU to get info about molecule

Qubit 1 Qubit 2 Qubit 3 Qubit 4
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• Every spin orbital requires 1 new qubit

• 64 orbitals could be exactly treated with only 128
qubits



Challenges with realizing useful quantum computers 10/21

• Many errors/noise with current devices:
• Entangled superpositions only last for a short period of time
• Related to T1 and T2 in NMR
• Operations take a fixed amount of time, limiting the types of computations that can be performed
• �bits are rarely perfect 2-level systems - operations can have errors

• Long-term: error correction – Until then NISQ devices
• Noisy Intermediate-Scale Quantum devices

• What can we do in the NISQ era?
1. Improve algorithms to minimize # of operations needed
2. Improve qubit platforms to minimize errors
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Improved Algorithms: ADAPT-VQE 12/21

• Problem: Every operation adds noise - how to minimize # of
operations?

• Solution: Don’t define operations before computation - grow
dynamically: ADAPT-VQE∗

Qubit 1 Qubit 2 Qubit 3 Qubit 4
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dynamically: ADAPT-VQE∗
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Collaborative Projects with Barnes and Economou
groups in Physics Dept

Next Steps:
1. Implement on IBM hardware (in progress)

2. Further improvements (qubit operators, etc)

∗Grimsley, Barnes, Economou, Mayhall. Nature Communications 10, 3007, (2019)
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TbPc2: A special Single Molecule Magnet 14/21

• SMM: as natural 2-level systems - obvious candidates for qubits - but electronic spins quickly decohere

• Nuclear spins, be�er isolated, longer coherence, but di�icult to control/couple (magnetic fields)

• Recently,a Wernsdorfer demonstrated that the nuclear spin in SMM TbPc2 could be electronically
controlled

aWernsdorfer and coworkers, Science, 334, 1135 (2014)
bIshikiwa et al., JACS., 125, 8694 (2003)
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TbPc2: A special Single Molecule Magnet 14/21

• SMM: as natural 2-level systems - obvious candidates for qubits - but electronic spins quickly decohere

• Nuclear spins, be�er isolated, longer coherence, but di�icult to control/couple (magnetic fields)

• Recently,a Wernsdorfer demonstrated that the nuclear spin in SMM TbPc2 could be electronically
controlled

aWernsdorfer and coworkers, Science, 334, 1135 (2014)
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• Our goal is to understand how the chemical
properties relate to the physical properties



Ab initio spectrum of TbPc2 15/21

• RASSCF/SO-RASSI/ANO-RCC-VDZ (VDZP on Tb)

• Spin-orbit e�ects are huge
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New method to simplify calculations: SF-EA 16/21

• Multireference methods (CASPT2, MRCI) expensive and
di�icult to use

• Spin degeneracy – Spin-flip methods (Anna Krylov):

• Spatial degeneracy – IP/EA methods:

• TbPc2 has both spin- and spatial- degeneracy→ SF-EA or SF-IP∗

Tb
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2. New method to simplify calculations: SF-EA 17/21

Shannon Houck

• [Fe2(OH)3(NH3)6]2+ is a simpler example of mixed spin/spatial degeneracy (Double
Exchange)

• Oxidized/High-spin gives well-defined ground state

• SF-EA excitations generate target configurations

• Solving for coe�icients predicts double exchange behavior

∗Shannon Houck, Mayhall (2019). JCTC. 15, 2278
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2. New method to simplify calculations: SF-EA 17/21

Shannon Houck

• [Fe2(OH)3(NH3)6]2+ is a simpler example of mixed spin/spatial degeneracy (Double
Exchange)

• Oxidized/High-spin gives well-defined ground state

• SF-EA excitations generate target configurations

• Solving for coe�icients predicts double exchange behavior
Next Steps:

1. Faster implementation (Shannon currently at
QChem internship doing this!)

2. Ready for TbPc2 a�er adding spin-orbit (in
progress: Oinam Meitei)

∗Shannon Houck, Mayhall (2019). JCTC. 15, 2278
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Be�er embedding methods 19/21

TbPc2 Phthalocyanine "Pc"

DFT Wavefunction

Daniel Claudino

• Goal: treat area directly interacting with Tb at high-level of theory, with low-level
DFT for the rest

• Subsystem Projected AO DEcomposition (SPADE)∗

1. Perform full-system DFT calculation
2. Project density onto active atoms
3. SVD molecular orbital matrix
4. Rotate orbitals into SVD basis
5. Do high-level WF calculation only in embedded space

• SPADE is more robust than previous approaches

• We’ve recently made further improvements, reducing cost∗∗

by “concentric localization” of virtual orbitals

∗Daniel Claudino, Mayhall (2019). JCTC. 15, 1053
∗∗Daniel Claudino, Mayhall (2019). ChemRxiv. doi:10.26434/chemrxiv.8846108.v2



Be�er embedding methods 20/21

Daniel Claudino

• As example, consider SN2 inside Carbon
Nano Tube (CNT)

• CNT environment has big impact on
reaction

• DFT and MP2 exhibit large di�erences

• Embedding MP2 inside of DFT works really
well
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Next Steps:
1. Combine Shannon’s SF-EA code with Daniel’s

embedding with Oinam’s SOC integrals

2. Tackle TbPc2 on a substrate!

∗Daniel Claudino, Mayhall (2019). JCTC. 15, 1053
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